Average Co magnetic moment of R-Co-B (R = Y, Pr and Nd) compounds

FUMIO MARUYAMA 177-11, Shimadachi, Matsumoto 390-0852, Japan E-mail: fmaruya@shinshu-u.ac.jp

Published online: 08 July 2005

We estimate the average Co magnetic moment and account for the moment variation by a model in $Y_{n+1}Co_{3n+5}B_{2n}$ (n = 0, 1, 2, 3 and ∞), $Pr_{m+n}Co_{5m+3n}B_{2n}$ (m = 2, n = 1 and m = 2, n = 3), $Nd_{m+n}Co_{5m+3n}B_{2n}$ (m = 3, n = 2) and $Y_2Co_{14}B$ compounds. And we obtain the magnetic properties of hypothetical $Y_{m+n}Co_{5m+3n}B_{2n}$ (n = 1, m = 2, 3, 4 and 5) compounds. © 2005 Springer Science + Business Media, Inc.

1. Introduction

In the case of R-Co-B (R = rare-earth) systems, it has been shown that a homologous series of compounds exists between the compositions RCo₅ and RCo₃B₂. This series is represented by a general formula $R_{n+1}Co_{3n+5}B_{2n}$, which is formed by alternating stacking of one layer RCo₅ and *n* layers RCo₃B₂ along the *c* axis. The $R_{n+1}Co_{3n+5}B_{2n}$ compounds, where *R* is a rare earth or yttrium, crystallize in a hexagonal structure having the P6/mmm space group and are known to exhibit a very interesting series of crystal structures with special atomic orderings depending on n [1–3]. The crystal structures of $R_{n+1}Co_{3n+5}B_{2n}$ (n = 0, 1,2, 3 and ∞), $R_{m+n}Co_{5m+3n}B_{2n}$ (m = 2, n = 1 and m = 2, n = 3) and R₂Co₁₄B are shown in Fig. 1. The $R_{n+1}Co_{3n+5}B_{2n}$ compounds with n = 1 (RCo₄B), n = 2 (R₃Co₁₁B₄), n = 3 (R₂Co₇B₃) and $n = \infty$ (RCo₃B₂) are derived from the RCo₅ structure by substituting *B* for Co at the 2c site [4]. For $R_{n+1}Co_{3n+5}B_{2n}$, there are three kinds of Co sites expressed by Co(N) with N = 1, 2 and 3, where Co(N) means a Co atom which has N boron layers just above and/or just below. The RCo_4B compound has Co(0) and Co(1) sites. The $R_3Co_{11}B_4$ and $R_2Co_7B_3$ compounds have Co(0), Co(1)and Co(2) sites. The RCo₃B₂ compound has only Co(2)site and the average Co moment is very small [5].

New compounds $R_3Co_{13}B_2$ (R = Pr, Nd and Sm) [6–8], $R_5Co_{19}B_6$ (R = Pr and Nd) [6, 9] and Nd₅Co₂₁B₄ [10] have been synthesized successfully and belong to the $R_{m+n}Co_{5m+3n}B_{2n}$ family with m = 2, n = 1, m = 2, n = 3 and m = 3, n = 2, respectively. The crystal structure of m = 3, n = 2 is the same as that of m = 2, n = 3. While the 2*d* and 4*h*2 sites are occupied by *B* and the 4*h*1 site is occupied by Co in m = 2, n = 3, those by Co and that by *B* in m = 3, n = 2. Those crystallize in a hexagonal structure having the P6/mmm space group and are crystal-lographically equivalent to $R_{n+1}Co_{3n+5}B_{2n}$, which is $R_{m+n}Co_{5m+3n}B_{2n}$ with m = 1. Those are formed by alternate stacking of *m* parts of RCo₅ with *n* parts of RCo₃B₂ along the *c* axis and are expected to show a

0022–2461 © 2005 Springer Science + Business Media, Inc. DOI: 10.1007/s10853-005-0639-2

combination of high Curie temperature, large saturation magnetization and large magnetocrystaline anisotropy. The $R_3Co_{13}B_2$ and $R_5Co_{21}B_4$ compounds have Co(0) and Co(1) sites. The $R_5Co_{19}B_6$ compound has Co(0), Co(1) and Co(2) sites.

The R₂Co₁₄B compound crystallizes with a tetragonal structure having the P42/mnm space group and has two rare-earth sites (4f and 4g), six Co sites (16k1, 16k2, 8j1, 8j2, 4e and 4c) and one boron site (4g). The R₂Fe₁₄B compound is most attractive due to the industrial application for permanent magnets. There are four $R_2Co_{14}B$ units (68 atoms) per unit cell. All the R and B atoms, but only 4 of the 56 Co atoms, reside in the z = 0 and 0.5 planes. Between these the other Co atoms form puckered, yet fully connected, hexagonal nets. The tetragonal structure of R₂Co₁₄B is closely related to the RCo₅-type structure [11]. The B atom occupies the center of trigonal prism formed by the three nearest Co atoms above and the three below the plane containing B and R atoms. The prisms are strong structural units linking the Co planes above and below those containing R and B [12]. The prisms also coordinate all R and B atoms. Three R atoms are bonded to each B through the rectangular prism faces. Gaskell [13] has stressed that such trigonal prisms are fundamental to the structure of many transition metal-metalloid systems, both crystalline (e.g., FeB and Fe₃C) and amorphous.

In this work, we estimate the average Co magnetic moment and account for the moment variation by a model in $Y_{n+1}Co_{3n+5}B_{2n}$ $(n = 0, 1, 2, 3 \text{ and } \infty)$, $Pr_{m+n}Co_{5m+3n}B_{2n}$ (m = 2, n = 1 and m = 2, n = 3), $Nd_{m+n}Co_{5m+3n}B_{2n}$ (m = 3, n = 2) and $Y_2Co_{14}B$ compounds. And we obtain the magnetic properties of hypothetical $Y_{m+n}Co_{5m+3n}B_{2n}$ (n = 1, m = 2, 3, 4 and 5) compounds.

2. Results and discussion

2.1. Interatomic distance

We calculated the distances from each site to the neighboring atoms, d, and the number of the neighboring

Figure 1 The crystal structure of $R_{n+1}Co_{3n+5}B_{2n}$ (n = 0, 1, 2, 3 and ∞), $R_{m+n}Co_{5m+3n}B_{2n}$ (m = 2, n = 1 and m = 2, n = 3) and $R_2Co_{14}B$.

atoms at each site, N, in $Y_{n+1}Co_{3n+5}B_{2n}$ (n = 0, 1, 2, 3and ∞), $Pr_3Co_{13}B_2$, $Pr_5Co_{19}B_6$ and $Y_2Co_{14}B$. We used the results of Rietveld refinement for $Y_{n+1}Co_{3n+5}B_{2n}$ (n = 0, 1, 2, 3 and ∞) [14], $Pr_3Co_{13}B_2$ [6], $Pr_5Co_{19}B_6$ [8] and Nd₂Fe₁₄B [11] and the values of the lattice constants for $Y_{n+1}Co_{3n+5}B_{2n}$ (n = 0, 1, 2, 3 and ∞), $Pr_3Co_{13}B_2$, $Pr_5Co_{19}B_6$ and $Y_2Co_{14}B$, which are from Refs. [5, 6, 8, 15], respectively. We also calculated the average distance from each Y (Pr), Co and B site to the neighboring Y (Pr), Co and B.

The dependence of the average distances from each Co site to the neighboring Co and B atoms, d_{Co-Co} and d_{Co-B} , and from each B site to the neighboring B atoms, d_{B-B} on the *B* concentration for $Y_{n+1}Co_{3n+5}B_{2n}$ $(n = 0, 1, 2, 3 \text{ and } \infty)$, Pr₃Co₁₃B₂, Pr₅Co₁₉B₆ and Y₂Co₁₄B is shown in Fig. 2. The values of d_{Co-Co} and d_{Co-B} increase with increasing B concentration. The increase in d_{Co-Co} is larger than that in d_{Co-B}. The values of d_{B-B} decrease with increasing *B* concentration. The density, D, of $Y_{n+1}Co_{3n+5}B_{2n}$ (n = 0, 1, 2, 3) and ∞), Y₃Co₁₃B₂, Y₅Co₁₉B₆ and Y₂Co₁₄B is also shown in Fig. 2. When we calculated the values of Y₃Co₁₃B₂ and Y₅Co₁₉B₆, we used the lattice constants of $Pr_3Co_{13}B_2$ and $Pr_5Co_{19}B_6$. The values of D decrease linearly with increasing B concentration and those of $Y_3Co_{13}B_2$, $Y_5Co_{19}B_6$ and $Y_2Co_{14}B$ are small in spite of small B concentration.

In $Y_{n+1}Co_{3n+5}B_{2n}$ (n = 1, 2, 3 and ∞), $Pr_3Co_{13}B_2$, $Pr_5Co_{19}B_6$ and $Y_2Co_{14}B$, trigonal prism containing B atom exists and that in the YCo₄B structure is shown in Fig. 3. The B atom occupies the center of trigonal prism formed by the three nearest Co atoms above and the three below the plane containing B and R. The distances between the B(2d) atom and its nearest neighbors are B-Co(6i) = 2.05 Å, B-Co(6i) = 2.08 Å, B-Y(1b) = 2.92 Å and B-Y(1b) = 2.88 Å. The vertical edge length is Co(6i)-Co(6i) = 2.93 Å. Distance in the triangular face is Co(6i)-Co(6i) = 2.51 Å. The values above are almost the same values in $Y_{n+1}Co_{3n+5}B_{2n}$ (n = 2, 3 and ∞), Pr₃Co₁₃B₂ and Pr₅Co₁₉B₆. In Y₂Co₁₄B, the distances between the B(4g) atom and its nearest neighbors are B-Co(16k1) = 2.02 Å, B-Co(4e) = 2.08 Å, B-Y(4g) = 2.79 Å and B-Y(4f) = 3.28 Å. The vertical edge lengths are Co(4e)-Co(4e) = 2.64 Å and Co(16k1)-Co(16k1) = 3.00 Å. Distances in the triangular face are Co(16k1)-Co(4e) = 2.45 Å and Co(16k1)-Co(16k1) =2.53 Å.

2.2. The average Co magnetic moment

The dependence of the average magnetic moment per Co atom, μ_{Co} , and Curie temperature, Tc, on the *B* concentration for $Y_{n+1}Co_{3n+5}B_{2n}$ (n = 0, 1, 2, 2)

Figure 2 The dependence of the average distances from each Co site to the neighboring Co and *B* atoms, d_{Co-Co} and d_{Co-B} , and from each *B* site to the neighboring *B* atoms, d_{B-B} on the *B* concentration for $Y_{n+1}Co_{3n+5}B_{2n}$ (n = 0, 1, 2, 3 and ∞), $Pr_3Co_{13}B_2$, $Pr_5Co_{19}B_6$ and $Y_2Co_{14}B$. The density, D, of $Y_{n+1}Co_{3n+5}B_{2n}$ (n = 0, 1, 2, 3 and ∞), $Y_3Co_{13}B_2$, $Y_5Co_{19}B_6$ and $Y_2Co_{14}B$ is also shown.

Figure 3 Trigonal prism containing a boron atom in the YCo₄B structure.

3 and ∞), Pr₃Co₁₃B₂, Pr₅Co₁₉B₆ and Y₂Co₁₄B is shown in Fig. 4. The values of μ_{Co} and Tc for YCo₅, YCo₄B, Y₃Co₁₁B₄, Y₂Co₇B₃, Pr₃Co₁₃B₂, Pr₅Co₁₉B₆ and Y₂Co₁₄B are from Refs. [16], [5, 17], [5, 18], [5, 19], [6], [8] and [15], respectively. The values of μ_{Co} for Pr compounds [6, 8] are obtained by assuming that the average Pr^{3+} moment to be 2.4 μ_B . The values of $\mu_{\rm Co}$ decrease almost linearly with increasing B concentration, that is, the values of d_{Co-Co}. The values of Tc also decrease with increasing B concentration. Those for YCo₅ and Y₂Co₁₄B are large. For the other compounds, those are small and the value of $Pr_3Co_{13}B_2$ is small comparing with those of other compounds. The dependence of the average magnetic moment per Co atom, μ_{Co} , and Curie temperature, Tc, on the average number of the nearest neighbor Co atoms at each site, N(Co), for $Y_{n+1}Co_{3n+5}B_{2n}$ (n = 0, 1, 2, 3 and ∞), Pr₃Co₁₃B₂, Pr₅Co₁₉B₆ and Y₂Co₁₄B is shown in Fig. 5.

Figure 4 The dependence of the average magnetic moment per Co atom and Curie temperature on the *B* concentration for $Y_{n+1}Co_{3n+5}B_{2n}$ (n = 0, 1, 2, 3 and ∞), Pr₃Co₁₃B₂, Pr₅Co₁₉B₆ and Y₂Co₁₄B.

Figure 5 The dependence of μ_{Co} , and Tc on the average number of the nearest neighbor Co atoms at each site, N(Co), for $Y_{n+1}Co_{3n+5}B_{2n}$ $(n = 0, 1, 2, 3 \text{ and } \infty)$, $Pr_3Co_{13}B_2$, $Pr_5Co_{19}B_6$ and $Y_2Co_{14}B$.

The values of μ_{Co} and Tc increase with increasing the values of N(Co). Hence, the increased N(Co) and the decreased d_{Co-Co} enhance the values of μ_{Co} and Tc.

The concentration of the numbers of Co(0), Co(1) and Co(2) sites versus the average Co monent for $Y_{n+1}Co_{3n+5}B_{2n}$ $(n = 0, 1, 2, 3 \text{ and } \infty)$, $Pr_{m+n}Co_{5m+3n}B_{2n}$ (m = 2, n = 1 and m = 2, n = 3)and $Nd_{m+n}Co_{5m+3n}B_{2n}$ (m = 3, n = 2) are shown in Fig. 6. The average Co moment increases with increasing the Co(0) concentration and decreases with increasing the Co(2) one.

2.3. A model of the moment variation in $Y_{n+1}Co_{3n+5}B_{2n}$ (n = 0, 1, 2, 3 and ∞), $Pr_{m+n}Co_{5m+3n}B_{2n}$ (m = 2, n = 1 and m = 2, n = 3), $Nd_{m+n}Co_{5m+3n}B_{2n}$ (m = 3, n = 2) and $Y_2Co_{14}B$ compounds

We consider a model focus on boron coordination in explaining magnetic moments in those compounds. The

Figure 6 The concentration of the numbers of Co(0), Co(1) and Co(2) sites versus the average Co monent for $Y_{n+1}Co_{3n+5}B_{2n}$ (n = 0, 1, 2, 3 and ∞), $Pr_3Co_{13}B_2$, $Pr_5Co_{19}B_6$ and $Nd_5Co_{21}B_4$.

extent of p-d bonding is assumed to be proportional to the number of T (transition-metal) atoms surrounding an M (metalloid) atom, Z. If the T atom is strongly ferromagnetic with a magnetization at 0 K of n_B , the magnitude of the average magnetic moment μ per T atom in the alloy is shown as below [20]:

$$\mu = n_B - Z(n_B/5)(N_M/N_T),$$
 (1)

where N_M/N_T is the ratio of the number of M atoms to T atoms. Equation 1 assumes that each of the Z nearestneighbor T atoms forms a bond with the central M atom and therefore loses, on average, one fifth of its moment because one of its five 3d electron orbitals is tied up in a nonmagnetic, covalent bond.

We show the average Co magnetic moment, μ_{Co} , as a function of concentration N_B/N_{Co} for $Y_{n+1}Co_{3n+5}B_{2n}$ $(n = 0, 1, 2, 3 \text{ and } \infty)$, $Pr_{m+n}Co_{5m+3n}B_{2n}$ (m = 2, n = 1)1 and m = 2, n = 3), Nd_{*m*+*n*}Co_{5*m*+3*n*}B_{2*n*} (m = 3, n =2) and $Y_2Co_{14}B$ compounds in Fig. 7. The values of μ_{Co} for YCo₅, YCo₄B, Y₃Co₁₁B₄, Y₂Co₇B₃, YCo₃B₂, $Pr_3Co_{13}B_2$, $Pr_5Co_{19}B_6$, $Nd_5Co_{21}B_4$ and $Y_2Co_{14}B$ are from Refs. [16], [5], [5], [5], [5], [6], [9], [10] and [15], respectively. The values of μ_{Co} for Pr [6, 8] and Nd [10] compounds are obtained by assuming that the average Pr^{3+} and Nd^{3+} moment to be 2.4 and 3.0 μ_B , respectively. The value of $n_{\rm B}$ was taken as 1.72 $\mu_{\rm B}$ for hcp Co. The value of μ_{Co} does not decrease linearly with increasing that of N_B/N_{Co} . Line a is a model in Equation 1, where Z is six, and departs from the values of μ_{Co} . So, we must change the value of Z in Equation 1 to fit the values of μ_{Co} . Line *B* is calculated using a least-squares program for $0 \le N_B/N_{\rm Co} \le 0.66$ and the value of Z is 9.1, but the line does not fit the values of $\mu_{\rm Co}$. In all regions, a line can not be drown and there are two slopes. Next, we obtained line c using a leastsquares program for $0 \le N_B/N_{Co} \le 0.25$. The line fits

Figure 7 Average Co magnetic moment as a function of concentration N_B/N_{C0} for $Y_{n+1}Co_{3n+5}B_{2n}$ $(n = 0, 1, 2, 3 \text{ and } \infty)$, $Pr_3Co_{13}B_2$, $Pr_5Co_{19}B_6$, $Nd_5Co_{21}B_4$ and $Y_2Co_{14}B$ compounds. Line a is a model in Equation 1. Lines *B* and c are calculated using a least-squares program for $0 \le N_B/N_{C0} \le 0.66$ and for $0 \le N_B/N_{C0} \le 0.25$, respectively.

the values of μ_{Co} well and the value of Z is 13.2. Consequently, the value of Z is varied continuously from 13.2 for $0 \le N_B/N_{Co} \le 0.25$ to 9.1 for $0 \le N_B/N_{Co} \le$ 0.66. The value of Z is near 13.2 and a boron atom bonds with 13.2 Co atoms for $Y_2Co_{14}B$, $Pr_3Co_{13}B_2$, $Nd_5Co_{21}B_4$ and YCo_4B . The value of Z is near 9.1 and a boron atom bonds with 9.1 Co atoms for $Pr_5Co_{19}B_6$, $Y_3Co_{11}B_4$ and $Y_2Co_7B_3$. Consequently, the extent of p-d bonding becomes large with decreasing the value of N_B/N_{Co} and gives rise to a sharper moment reduction. The value of Z is large comparing with that obtained from structural analysis. While we assume that T atom loses one fifth of its moment, T atom is considered to lose more its moment.

2.4. The magnetic properties of hypothetical $Y_{m+n}Co_{5m+3n}B_{2n}$ (n = 1, m = 2, 3, 4 and 5) compounds

The Y₂Co₁₄B compound is most similar to Pr₃Co₁₃B₂ among Y_{n+1}Co_{3n+5}B_{2n} (n = 0, 1, 2, 3 and ∞) and Pr_{m+n}Co_{5m+3n}B_{2n} (m = 2, n = 1 and m = 2, n = 3) compounds, considering *B* concentration and Co moment. Here, increasing m from 2 to 5 with n = 1, the *B* concentration decreases and that of m = 5 is almost equal to that of Y₂Co₁₄B and the comparizon of those compounds with Y₂Co₁₄B is very interesting. Hence, we estimate the Co moment for hypothetical Y_{m+n}Co_{5m+3n}B_{2n} (n = 1, m = 2, 3, 4 and 5) compounds, which are Y₃Co₁₃B₂, Y₂Co₉B, Y₅Co₂₃B₂ and Y₃Co₁₄B, respectively. Those are formed by alternate stacking of m parts of RCo₅ with one part of RCo₃B₂ along the *c* axis. The *B* atoms reside only in the *z* = 0 and 1 planes. Those compounds have Co(0) and Co(1) sites. The values of μ_{Co} at the 2c site, which is Co(0) site, and 6i site, which is Co(1) site, for YCo₄B obtained by neutron powder diffraction are 1.5 and 0.5 μ_B , respectively [9], and we used the values. So the calculated values of μ_{Co} are 1.0, 1.2, 1.2 and 1.3 μ_B for Y₃Co₁₃B₂, Y₂Co₉B, Y₅Co₂₃B₂ and Y₃Co₁₄B, respectively. The value of μ_{Co} decreases almost linearly with increasing *B* concentration. The *B* concentration for Y₂Co₁₄B (5.88%) is almost equal to that for Y₃Co₁₄B are 1.4 and 1.3 μ_B , respectively.

Next, we estimate the magnetic anisotropy for hypothetical $Y_{m+n}Co_{5m+3n}B_{2n}$ (*n* = 1, *m* = 2, 3, 4 and 5) compounds. The NMR study of RCo₅ by Streever [21] indicated that the spin-orbit magnetic moment of Co atom at the 2c site contributes significantly to the anisotropy of RCo₅. The uniaxial magnetization direction of RCo₅ stems from Co atoms at the 2c site and Co atoms at the 3g site exert a relatively small reverse contribution [21]. Moreover to study the Co contribution to the magnetic anisotropy, we calculate the total anisotropy energy, E_A , using the local anisotropy energy per Co atom, Es, of the hypothetical $Y_{m+n}Co_{5m+3n}B_{2n}$ (n = 1, m = 2, 3, 4 and 5) compounds, which are Y₃Co₁₃B₂, Y₂Co₉B, Y₅Co₂₃B₂ and Y₃Co₁₄B, respectively. We used the values of Es in YCo₅ [21] and Y₃Co₁₁B₄ [22]. In YCo₅, the values of Es at the 2c and 3g sites, being Co(0) site, are 24 and -7 cm^{-1} /atom, respectively. In YCo₅, the net calculated anisotropy energy is 27 cm⁻¹/unit cell or about 6.4×10^7 erg/cm³. This is close to the measured low temperature anisotropy energy K_1 of 7.5×10^7 erg/cm^{3} for YCo₅ [23]. It appears then that the singleion anisotropy could explain most of the anisotropy of the compound [24]. In $Y_3Co_{11}B_4$, the values of Es at the 6i1 site, being Co(1) site, and the 6i2 site, being Co(2) site, are -8.1 and 0.69 cm⁻¹ /atom, respectively. Then

$$E_{A}(Y_{3}Co_{13}B_{2}) = 3Es(3g) + 4Es(4h) + 6Es(6i)$$

= 26.4 cm⁻¹/unit cell, (2)

where Es(4h) = Es(2c) and Es(6i) = Es(6i1). The calculated values of E_A for Y_2Co_9B , $Y_5Co_{23}B_2$ and $Y_3Co_{14}B$ are 53.4, 80.4 and 107.4 cm⁻¹/unit cell, respectively.

Similarly, the calculated values of E_A for hypothetical $Y_{m+n}Co_{5m+3n}B_{2n}$ (m = 2, n = 3 and m = 3, n = 2) compounds, which are $Y_5Co_{19}B_6$ and $Y_5Co_{21}B_4$, are -1.2 and 46.8 cm⁻¹/unit cell, respectively. The dependence of the value of E_A and the average Es on the *B* concentration for hypothetical $Y_{m+n}Co_{5m+3n}B_{2n}$ (n = 1, m = 2, 3, 4 and 5), hypothetical $Y_{m+n}Co_{5m+3n}B_{2n}$ (m = 2, n = 3 and m = 3, n = 2) and $Y_2Co_{14}B$ [25] compounds is shown in Fig. 8. The average Es decreases with increasing *B* concentration except for that of $Y_2Co_{14}B$.

The easy magnetization direction in $Pr_3Co_{13}B_2$ from 5 K to room temperature is parallel to the *c* axis [6]

Figure 8 The dependence of the value of E_A and the average Es on the *B* concentration for hypothetical $Y_{m+n}Co_{5m+3n}B_{2n}$ (n = 1, m = 2, 3, 4 and 5), hypothetical $Y_{m+n}Co_{5m+3n}B_{2n}$ (m = 2, n = 3 and m = 3, n = 2) and $Y_2Co_{14}B$ compounds.

and is explained as below. In $R_{m+n}Co_{5m+3n}B_{2n}$, the sign of A_2^0 is negative [3], which means that the R ion having a negative second-order Stevens coefficient α_J (Pr³⁺, Nd³⁺) shows planar anisotropy. The magnetic anisotropy results from a competition between the planar anisotropy of the Pr ions and the uniaxial one of the Co sublattice. The axial anisotropy of Co atoms is large, hence the Pr₃Co₁₃B₂ compound has axial anisotropy. In $R_{m+n}Co_{5m+3n}B_{2n}$, the *R* ion having a positive α_I (Sm³⁺) shows axial anisotropy. The magnetic anisotropy of R in the plane containing B atoms is strengthened by B atoms as explained below. The Ratom is surrounded by B atoms in the c plane. Assuming that B atom has a negative charge, the 4f electrons in R atom are distributed avoiding B atoms. From the schematic distributions of the wave functions of the 4f electrons in Sm, the axial anisotropy strengthens. Consequently, the $Sm_{m+n}Co_{5m+3n}B_{2n}$ compounds with large *B* concentration are expected to have large axial anisotropy.

3. Conclusions

In this work, we estimate the average Co magnetic moment and account for the moment variation by a model in $Y_{n+1}Co_{3n+5}B_{2n}$ (n = 0, 1, 2, 3 and ∞), $Pr_{m+n}Co_{5m+3n}B_{2n}$ (m = 2, n = 1 and m = 2, n = 3), $Nd_{m+n}Co_{5m+3n}B_{2n}$ (m = 3, n = 2) and $Y_2Co_{14}B$ compounds. And we obtain the magnetic properties of hypothetical $Y_{m+n}Co_{5m+3n}B_{2n}$ (n = 1, m = 2, 3, 4 and 5) compounds.

(1) The values of $d_{\text{Co-Co}}$ and $d_{\text{Co-B}}$, the average distances from each Co site to the neighboring Co and *B* atoms, increase with increasing *B* concentration.

(2) The values of μ_{Co} decrease almost linearly with increasing *B* concentration, that is, the values of d_{Co-Co} . The values of Tc also decrease with increasing *B* concentration. The values of μ_{Co} and Tc increase with increasing the values of N(Co), the average

number of the nearest neighbor Co atoms at each site.

(3) The extent of p-d bonding becomes large with decreasing the value of $N_{\rm B}/N_{\rm Co}$, the ratio of the number of *B* atoms to Co atoms and gives rise to a sharper moment reduction.

(4) The *B* concentration for Y₂Co₁₄B is almost equal to that for hypothetical Y₃Co₁₄B. The value of μ_{Co} is 1.4 μ_{B} for Y₂Co₁₄B and the calculated value of μ_{Co} is 1.3 μ_{B} for Y₃Co₁₄B.

(5) The average Es decreases with increasing *B* concentration for hypothetical $Y_{m+n}Co_{5m+3n}B_{2n}$ (n = 1, m = 2, 3, 4 and 5) and hypothetical $Y_{m+n}Co_{5m+3n}B_{2n}$ (m = 2, n = 3 and m = 3, n = 2) compounds.

References

- 1. H. OSTERREICHER, F. T. PARKAR and M. MISROCH, *Appl. Phys.* **12** (1977) 287.
- 2. Y. B. KUZMA, N. S. BILONIZHKO, S. I. MYKHALENKO, G. F. STEPANOVA and N. F. CHABAN, *J. Less-Common Met.* **67** (1979) 51.
- 3. H. H. SMIT, R. C. THIEL and K. H. J. BUSCHOW, J. *Phys. F* 18 (1988) 295.
- 4. Y. B. KUZMA and N. S. BILONIZHKO, Sov. Phys. Crystallogr. 18 (1974) 447.
- 5. H. IDO, Kotai Butsuri 30 (1995) 875 [in Japanese].
- 6. Y. CHEN, J. K. LIANG, X. L. CHEN, Q. L. LIU, B. G. SHEN and Y. P. SHEN, J. Phys.: Condens. Matter 11 (1999) 8251.
- Y. CHEN, Q. L. LIU, J. K. LIANG, X. L. CHEN, B.
 G. SHEN and F. HUANGI, *Appl. Phys. Lett.* 74 (1999) 856.

- Y. CHEN, X. LI, X. L. CHEN, J. K. LIANG, G. H. RAO and Q. L. LIU, J. Alloys Compd. 305 (2000) 216.
- 9. Y. CHEN, X. L. CHEN, J. K. LIANG B. G. SHEN and Q. L. LIU, *Phys. Rev.* B61 (2000) 3502.
- W. G. CHU, G. H. RAO, H. F. YANG, G. Y. LIU and J. K. LIANG, J. Appl. Phys. 90 (2001) 1931.
- 11. D. GIVORD, H. S. LI and J. M. MOREAU, Solid State Commun. 50 (1984) 497.
- 12. J. F. HERBST, J. J. CROAT and F. E. PINKERTON, *Phys. Rev.* **B29** (1984) 4176.
- 13. P. H. GASKELL, Nature 289 (1981) 47.
- 14. A. SZAJEK, J. Magn. Magn. Mater. 185 (1998) 322.
- K. H. J. BUSCHOW, D. B. DE MOOIJ, S. SINNEMA, R. J. RADWANSKI and J. J. M. FRANSE, *ibid.* 51 (1985) 211.
- 16. K. H. J. BUSCHOW, Rep. Prog. Phys. 40 (1977) 1179.
- H. S. LI and J. M. D. COEY, "Handbook of Magnetic Materials," edited by K. H. J. Buschow (North-Holland, Amsterdam, 1991) Vol. 6, p. 1.
- 18. A. KOWALCZYK, J. Magn. Magn. Mater. 136 (1994) 70.
- 19. Idem., ibid. 175 (1997) 279.
- 20. B. W. CORB, C. O' HANDLEY and N. J. GRANT, *Phys. Rev.* **B27** (1983) 636.
- 21. R. L. STREEVER, ibid. B19 (1979) 2704.
- 22. A. KOWALCZYK, *Phys. Stat. Sol.* (b) **181** (1994) K73.
- 23. G. HOFFER and K. STRNAT, J. Appl. Phys. 38 (1967) 1377.
- 24. R. L. STREEVER, Phys. Lett. A65 (1978) 360.
- 25. N. P. THUY, T. D. HIEN, N. M. HONG and J. J. M. FRANSE, *J. de Phys.* **49** (1988) C8-579.

Received 7 December 2004

and accepted 22 February 2005